absfuyu.dxt.intext module
Absfuyu: Data Extension
int extension
Version: 5.1.0 Date updated: 10/03/2025 (dd/mm/yyyy)
- class absfuyu.dxt.intext.IntExt[source]
Bases:
ShowAllMethodsMixin,intintextension- to_binary() str[source]
Convert to binary number
- Returns:
Binary number
- Return type:
str
Example:
>>> test = IntNumber(10) >>> test.to_binary() '1010'
- to_celcius_degree() float[source]
Convert into Celcius degree as if
selfis Fahrenheit degree- Returns:
Celcius degree
- Return type:
float
Example:
>>> test = IntNumber(10) >>> test.to_celcius_degree() -12.222222222222221
- to_fahrenheit_degree() float[source]
Convert into Fahrenheit degree as if
selfis Celcius degree- Returns:
Fahrenheit degree
- Return type:
float
Example:
>>> test = IntNumber(10) >>> test.to_fahrenheit_degree() 50.0
- reverse() Self[source]
Reverse a number. Reverse
abs(number)ifnumber < 0- Returns:
Reversed number
- Return type:
IntNumber
Example:
>>> test = IntNumber(102) >>> test.reverse() 201
- is_even() bool[source]
An even number is a number which divisible by 2
- Returns:
Trueif an even numberFalseif not an even number- Return type:
bool
- is_prime() bool[source]
Check if the integer is a prime number or not
A prime number is a natural number greater than
1that is not a product of two smaller natural numbers. A natural number greater than1that is not prime is called a composite number.- Returns:
Trueif a prime numberFalseif not a prime number- Return type:
bool
- is_twisted_prime() bool[source]
A number is said to be twisted prime if it is a prime number and reverse of the number is also a prime number
- Returns:
Trueif a twisted prime numberFalseif not a twisted prime number- Return type:
bool
- is_perfect() bool[source]
Check if integer is perfect number
Perfect number: a positive integer that is equal to the sum of its proper divisors. The smallest perfect number is
6, which is the sum of1,2, and3. Other perfect numbers are28,496, and8,128.- Returns:
Trueif a perfect numberFalseif not a perfect number- Return type:
bool
- is_narcissistic() bool[source]
Check if a narcissistic number
In number theory, a narcissistic number (also known as a pluperfect digital invariant (PPDI), an Armstrong number (after Michael F. Armstrong) or a plus perfect number) in a given number base
bis a number that is the sum of its own digits each raised to the power of the number of digits.- Returns:
Trueif a narcissistic numberFalseif not a narcissistic number- Return type:
bool
- is_palindromic() bool[source]
A palindromic number (also known as a numeral palindrome or a numeric palindrome) is a number (such as
16461) that remains the same when its digits are reversed.- Returns:
Trueif a palindromic numberFalseif not a palindromic number- Return type:
bool
- is_palindromic_prime() bool[source]
A palindormic prime is a number which is both palindromic and prime
- Returns:
Trueif a palindormic prime numberFalseif not a palindormic prime number- Return type:
bool
- lcm(with_number: int) Self[source]
Least common multiple of
selfandwith_number- Parameters:
with_number (int) – The number that want to find LCM with
- Returns:
Least common multiple
- Return type:
IntNumber
Example:
>>> test = IntNumber(102) >>> test.lcm(5) 510
- gcd(with_number: int) Self[source]
Greatest common divisor of
selfandwith_number- Parameters:
with_number (int) – The number that want to find GCD with
- Returns:
Greatest common divisor
- Return type:
IntNumber
Example:
>>> test = IntNumber(1024) >>> test.gcd(8) 8
Changed in version 3.3.0: Updated functionality
- add_to_one_digit(master_number: bool = False) Self[source]
Convert
selfinto 1-digit number by adding all of the digits together- Parameters:
master_number (bool) –
Break when sum =22or11(numerology)(Default:False)- Returns:
IntNumber
- Return type:
IntNumber
Example:
>>> test = IntNumber(119) >>> test.add_to_one_digit() 2
>>> test = IntNumber(119) >>> test.add_to_one_digit(master_number=True) 11
- divisible_list() list[int][source]
A list of divisible number
- Returns:
A list of divisible number
- Return type:
list[int]
Example:
>>> test = IntNumber(1024) >>> test.divisible_list() [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
Changed in version 5.0.0: Removed ``short_form`` parameter
- prime_factor(short_form: bool = True) list[int] | list[Pow][source]
Prime factor
- Parameters:
short_form (bool) –
Show prime list in short formNormal example:[2, 2, 2, 3, 3]Short form example:[2^3, 3^2](Default:True)- Returns:
- List of prime number that when multiplied together ==
selflist[int]: Long formlist[Pow]: Short form - Return type:
list[int] | list[Pow]
Example:
>>> test = IntNumber(1024) >>> test.prime_factor() [2^10]
>>> test = IntNumber(1024) >>> test.prime_factor(short_form=False) [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
- analyze(short_form: bool = True) dict[str, dict[str, Any]][source]
Analyze the number with almost all
IntNumbermethod- Parameters:
short_form (bool) –
Enable short form for some items(Default:True)- Returns:
Detailed analysis
- Return type:
dict[str, dict[str, Any]]
Example:
>>> test = IntNumber(1024) >>> test.analyze() { 'summary': {'number': 1024, 'length': 4, 'even': True, 'prime factor': [2^10], 'divisible': [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]}, 'convert': {'binary': '10000000000', 'octa': '2000', 'hex': '400', 'reverse': 4201, 'add to one': 7}, 'characteristic': {'prime': False, 'twisted prime': False, 'perfect': False, 'narcissistic': False, 'palindromic': False, 'palindromic prime': False} }